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Automatische Bestimmung von Schäden an 
Kulturgütern in Echtzeit mit Hilfe von künstlicher 
Intelligenz – Zusammenfassung 
Im vorliegenden Beitrag wird ein neues Ver-
fahren vorgestellt, welches Schäden an Kultur-
gütern automatisch erkennt und den Anwender 
darüber informiert. Das Verfahren basiert auf 
Methoden der künstlichen Intelligenz (KI). Zur 
Erkennung von Schäden werden verschiedene 
Sensortypen wie berührungslose Temperatur- 
und Luftfeuchtemessung mit einem Kamera-
System kombiniert. Aus den Daten werden dann 
mit Hilfe von Convolutional Neural Networks 

(CNN) automatisch die Zustände des zu beo-
bachtenden Objektes ermittelt. 
Die automatische Erkennung von Schäden an 
Kulturgütern ist besonders dann sinnvoll, wenn 
diese nicht direkt von einer Person überwacht 
werden können, bzw. wenn die permanente 
Schadensüberwachung durch Menschen zu 
aufwendig und kostspielig ist. Ein Beispiel dafür 
sind die Fenster von Kathedralen, die meist in 
großen Höhen eingebaut sind. Ein weiteres 
Beispiel sind Kirchenorgeln, wo die permanente 
Schimmelüberwachung auch innerhalb der 
Orgel einfach realisiert werden kann. 

--------- 

Automatic Determination of Damage to Cultural 
Assets by Means of Artificial Intelligence – 
Abstract 
This paper presents a new procedure that 
automatically detects damage to cultural 
objects and informs the user about it. The 
procedure is based on artificial intelligence (AI) 
methods. To detect damage, various sensor 
types such as non-contact temperature and 
humidity measurement are combined with a 
camera system. Convolutional neural networks 
(CNN) are then used to automatically determine 

the states of the object to be observed from the 
data. 
The automatic detection of damage to cultural 
assets is particularly useful when they cannot 
be directly monitored by a person, or when 
permanent damage monitoring by humans is 
too time-consuming and costly. Examples of 
this are the windows of cathedrals, which are 
usually installed at great heights. Another 
example is church organs, where permanent 
mold monitoring can also be easily realized 
inside the organ. 

--------- 

Introduction 

With a novel, innovative approach based on artificial intelligence (AI) algorithms, this article presents a 
procedure that automatically informs the user in real time about the development of damage to cultural 
property. For this purpose, a system platform was developed whose results can be understood without 
expert knowledge and which can be installed with minimal effort. This aspect of the simple applicability 
of a complex system has already led to very positive feedback from users in the Custos Aeris project 
(SANDER 2017). 

The basis of the system platform (fig. 1.) is formed by microcontroller-based electronics, called real-
time controller in the following, and a cloud server. The real-time controller, which is installed close to 
the object to be observed, combines a digital camera with illumination techniques in the visible light 
range. By evaluating the images with AI algorithms on the real-time controller, a system is created that 
enables automatic damage detection in situ and in real time. The system is supplemented with 
interfaces and sensors for recording temperature and relative humidity in the near field of the object to 
be monitored. In this way, the environmental conditions that led to the damage are also directly 
documented. The determined data is sent to the cloud server via LTE-connection. The cloud server takes 
over the data storage, the visualization of the data and informs the user in case of damage. The AI 
algorithms are also trained on the server. 
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The following objectives are to be achieved with the system: 

 Autonomous detection and assessment of damage in the early stages of visibility – in situ and 

in real time 

 Detection of different types of damage, e.g. damage due to condensation, cracking or mould 

 Automatic generation of a warning message to the user 

 Cloud-based data storage and data visualization 

 Documentation of the history of the damage by recording the environmental conditions in the 

near field of the object to be observed. 

 Detected sensor data and camera images can be used as the basis for a knowledge database 

to develop new algorithms for the early detection of damage. 

 

Fig. 1. System Architecture of the mold camera 2021 © iXtronics-Hajuveda. 

As part of a DBU 35604 project funded by the Deutsche Bundesstiftung Umwelt (DBU), such a system 
platform for the automatic detection of damage to cultural assets was developed (DAAMS 2020). The aim 
of the DBU project is initially to detect the development of mold. However, the system platform is 
planned to be so general that it can also detect damage to historical windows, such as condensation or 
cracks. The necessary flexibility of the system platform results from the AI algorithms, which are trained 
to recognize a wide variety of damage through appropriate training with sufficient image material. In 
the case of cracks, the system platform can also be supplemented with acceleration sensors for 
vibration measurement via existing interfaces. In this way, the causes of crack formation can also be 
documented in this case. 

State of the art 

The use of digital systems for the protection and preservation of cultural heritage is becoming 
increasingly widespread, as evidenced, for example, by the EuroMed 2018 conference (IOANNIDES et al. 
2018). The applications and methods described include numerical analyses using computer simulation 
models, 3D digitization and reconstruction, and virtual and augmented reality methods. Currently, 
artificial intelligence methods are also increasingly being used for the 3-D digitization of cultural assets. 
The starting point for these methods was the management of very large amounts of data during 
digitization, e.g. by laser scanners (BRUMANA et al. 2019, SANTOS 2017). To simplify data handling, artificial 
intelligence techniques such as Convolutional Neural Networks (CNNs) are used to automatically classify 
cultural objects (BELHI et al. 2018, LLAMAS 2017, PAOLANTI 2019). As a result, it is now possible to 
automatically catalogue extensive image databases and define more detailed criteria that lead to quick 
and reliable results for subsequent searches. 

In recent publications (CHAIYASARN et al. 2018, KWON & YU 2019), CNNs are also used for damage 
detection in the cultural property sector. This is university research that uses CNNs for automatic 
damage detection of, for example, cracks in historical buildings, masonry or sculptures. The data is 
recorded by camera and subjected to subsequent analysis. However, according to current research, the 
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use of AI methods for preventive damage detection in situ and in real time is uncharted territory in the 
field of cultural heritage. 

This is precisely the innovative character of the project. Based on CNN algorithms, a system is being 
developed that can detect damage to cultural objects in situ and in real time. By combining digital image 
recognition using CNN algorithms and sensors for recording the environmental conditions in the near 
field of the objects to be monitored, it will not only be possible to detect damage to cultural property, 
but also to directly document the environmental conditions that led to the damage. As an outlook, the 
data obtained in this way can be further developed into a knowledge database in follow-up projects. 

Solution concept and realisation 

The solution concept of the system platform is based on the components shown in fig. 1 and the cloud 
server. The cloud server forms the interface to the user by providing the data of the real-time controller 
via web server and informing the user about the status of the object to be monitored. The real-time 
controller collects all the necessary data on site in real time to assess whether there is damage or not 
and sends it to the cloud server via mobile radio. 

Real-time controller functionality 

The core component of the real-time controller is a microcontroller on which the peripheral 
components are managed. A sensor interface to non-contact temperature and humidity sensors is 
available for measuring the environmental conditions in the near field of the objects to be observed. 

The camera interface makes it possible to couple a digital camera with the real-time controller. The 
camera is supplemented with a ring of LEDs in the visible range, which is controlled by the controller. 

The real-time controller is equipped with an energy management system and a power supply based on 
primary cells in order to be able to work energy-autonomously and without interruption for at least 6 

months. With the memory components flash 
memory and SD card, the data of the cameras 
and the sensors are temporarily stored. The 
function of the Real Time Clock is to wake up 
the microcontroller from the energy-saving 
mode at defined times and to provide the 
measurement data with a time stamp. 

Since the system is intended to be energy-
autonomous, the time intervals in which a 
measurement will be taken and the time 
intervals in which the data will be transmitted 
to the cloud server via LTE are synchronized. 
Due to intensive research on mold growth in 
churches, the time interval is set to once a day 
to once every 3 days at midnight. 

Fig. 2 shows the front view of the mold 
camera including LED-bars for illumination and 
camera-objective. All electronic components are 
integrated in the housing. The temperature and 
relative humidity sensor is connected via a 
cable (hanging down in the picture). 

Cloud server functionality 

The cloud server forms the system interface to the user. By means of a web server and a user 
administration, the object data assigned to the user can be accessed and visualized on the system 
platform in an uncomplicated way by means of username and password via a web browser. The cloud 
server is also used to automatically notify the user of possible mold growth. The user can choose, for 
example, whether he wants to be informed by SMS or email. 

The database of the cloud server contains the user data, the object data and additional image data for 
the AI training. The user data includes, for example, the user name and the assigned object data. The 

Fig. 2. Front view of mold camera 2021. 
© iXtronics-Hajuveda. 
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object data stores information such as the object name, the object location and all data determined via 
real-time controller at the object. 

The AI algorithms are also initially developed, trained and tested on the cloud server. Through a 
downstream automatic analysis of all data from the real-time controllers in the field, the cloud server 
decides during operation whether the AI algorithms need to be retrained. 

AI algorithms 

The AI algorithms belonging to the central solution concept can only be described here in principle due 
to their complexity. A detailed description of the topic can be found, for example, in (SCHWAIGER 2019 or 
CHOLLET 2018). The core of the planned AI algorithms is a special neural network, a so-called 
Convolutional Neural Network (CNN), which was developed for image processing. 

The principle of a CNN, as with all neural networks, is to reproduce the brain of living beings and thus 
their pattern recognition abilities in the computer. Fig. 3a shows the structure of a CNN, which consists 
of a detection and an identification part. The identification part typically corresponds to a conventional 
neural network. The input image to be recognized is filtered in stages in the detection part and broken 
down into its features from simple to complex to extract the features to be recognized from the image 
at the end. The actual recognition of the features takes place in the identification part. 

Just like the human brain, neural networks must also be trained. To do this, the network must be fed 
as much data as possible in the so-called training phase. In the case of optical pattern recognition, the 
neural network receives a correspondingly large number of images for learning. The definition of what a 
damage image looks like is determined by the user. In the learning phase, labels with the properties to 
be recognized are assigned to the image data in the database. 

 

Fig. 3. Structure of a CNNs (a) and process of a Training (b) 2021. © iXtronics-Hajuveda. 
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Fig. 3 shows the development of the classification rate and the so-called loss function during a training 
phase for a CNN. The training is divided into so-called epochs. In each epoch, all training data, or training 
images, are fed into the CNN and optimization functions are used to change the parameters of the CNN 
in such a way that the recognition of the image information corresponds as closely as possible to the 
desired result. The optimum is a correctness classification rate of 1, which corresponds to a recognition 
rate of the images of 100 %. From the diagrams it can be seen that after several epochs the recognition 
rate for the test data approaches more and more the value 1. The recognition value for the validation 
data calculated simultaneously after each epoch also increases at first, but then stagnates at about 99 
%. Theoretically, the CNN can be trained until a recognition rate of 100 % is reached for the training 
data. However, it quickly becomes apparent that the CNN achieves a lower recognition rate for new 
data, such as the validation data. This effect is also reflected in the loss function. For the training data, 
this numerical value drops towards zero over the epochs. For the validation data, it initially drops and 
then rises again. This is an indication that the CNN has been optimized too much for the training data 
and the flexibility to recognize unknown data sets is lost. In this case, the CNN is overtrained. To avoid 
this, there are various strategies for training a CNN that must be applied in the project. 

Practical way for CNN-Training 

To be able to train the CNN optimally, 
many images are initially required. All in 
all, the support of the project partners 
and users brought together more than 
4000 fotos of mold in cultural objects. 
Images must be cut for two reasons: 
first it is necessary to see only one 
damage feature at a time and second the 
images should have maximum 250x250 
pixels for the CNN to have acceptable 
computational time. 

An example of cut images is shown in 
Fig. 4. Thanks to the very good support of 
the project altogether 350000 cut images 
were finally available for the training. 

 

 

Fig. 4. Cut images from cultural objects, 2021. 
© iXtronics-Hajuveda. 

From this pool, the images for the training 
for the features mold, dust and "o.k." were 
then selected. Fig. 5 shows an example for 
mold: 

Data augmentation is also used in the 
project as another way of obtaining the 
number of image data required. For this 
purpose, existing damage images from the 
database are zoomed, shifted, rotated and 
mirrored by algorithms in the computer. The 
training of the CNN is quite time consuming 
and requires computers with powerful 
graphic cards. The training was usually 
stopped after coming to 97% score rating, 
which means that 97% of the pictures shown 
were correctly classified to the right features. 

Fig. 5. Images cut of the feature “mold”, 2021. © iXtronics-Hajuveda. 
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Testing of the technology in the Cathedral of St Victor in Xanten 

Many of the training images for the 
neural networks came from the Xanten 
Cathedral shortly before mold removal by 
a team of restorers. In order to detect 
renewed mold growth as early as possible, 
a "mold camera - Custos Mucoris" with the 
real-time controller described here was 
installed in Xanten Cathedral. Fig. 6. shows 
the camera looking at the back of an altar. 
It was suspended with threaded rods from 
a roof batten which was wedged into the 
column. The temperature and humidity 
sensor was stuck with an adhesive pad in 
the immediate vicinity of the back wall of 
the altar. The camera has an LTE stick that 
transmits the camera images and sensor 
data to the cloud. 

Due to the slow growth of mold in 
churches, the cycle rate of the images was 
initially set to 1 photo per midnight and 
later to 1 photo every 3 days at midnight. 

During the real-time monitoring of the 
camera over a period of 5 months, 
unfortunately no new mold appeared. 
Therefore, to check the functionality of the 
concept, 3 mold images were mounted 
into one camera image. Since the photos 
are always cropped to a size of approx. 
250x250 pixels, the lower mold appears in 
a total of 4 pictures. Fig. 7. shows a section 
of the cut images in the back wall of the 
altar including the mold. 

The mold was clearly detected by the neural networks. Based on this evaluation, the user is then 
informed by email about the occurrence of mold. 

 

Fig. 7. Spitted image of the back of the altar including mold in Xanten, 2021. © iXtronics-Hajuveda. 

 

Fig. 6. The mold camera in a field test 
in the dome of Xanten, 2021. 

© iXtronics-Hajuveda. 
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Summary and outlook 

In the article, the concepts, and the realization of a system platform for the automatic damage 
detection of cultural assets by means of artificial intelligence were presented using the example of mold. 
The central components of the system platform are the real-time controller with environmental sensors 
and the camera system, the cloud server with a database and web server function, and the development 
of AI algorithms for autonomous damage detection. In the course of development so far, the scripts for 
image evaluation have been created using CNNs and successfully tested. 
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